Repeat-length variation in a wheat cellulose synthase-like gene is associated with altered tiller number and stem cell wall composition
نویسندگان
چکیده
The tiller inhibition gene (tin) that reduces tillering in wheat (Triticum aestivum) is also associated with large spikes, increased grain weight, and thick leaves and stems. In this study, comparison of near-isogenic lines (NILs) revealed changes in stem morphology, cell wall composition, and stem strength. Microscopic analysis of stem cross-sections and chemical analysis of stem tissue indicated that cell walls in tin lines were thicker and more lignified than in free-tillering NILs. Increased lignification was associated with stronger stems in tin plants. A candidate gene for tin was identified through map-based cloning and was predicted to encode a cellulose synthase-like (Csl) protein with homology to members of the CslA clade. Dinucleotide repeat-length polymorphism in the 5'UTR region of the Csl gene was associated with tiller number in diverse wheat germplasm and linked to expression differences of Csl transcripts between NILs. We propose that regulation of Csl transcript and/or protein levels affects carbon partitioning throughout the plant, which plays a key role in the tin phenotype.
منابع مشابه
Novel Structural and Functional Motifs in cellulose synthase (CesA) Genes of Bread Wheat (Triticum aestivum, L.)
Cellulose is the primary determinant of mechanical strength in plant tissues. Late-season lodging is inversely related to the amount of cellulose in a unit length of the stem. Wheat is the most widely grown of all the crops globally, yet information on its CesA gene family is limited. We have identified 22 CesA genes from bread wheat, which include homoeologs from each of the three genomes, and...
متن کاملA customized gene expression microarray reveals that the brittle stem phenotype fs2 of barley is attributable to a retroelement in the HvCesA4 cellulose synthase gene.
The barley (Hordeum vulgare) brittle stem mutants, fs2, designated X054 and M245, have reduced levels of crystalline cellulose compared with their parental lines Ohichi and Shiroseto. A custom-designed microarray, based on long oligonucleotide technology and including genes involved in cell wall metabolism, revealed that transcript levels of very few genes were altered in the elongation zone of...
متن کاملMorphological Evaluation and Marker Assisted for Tillering of Wheat
The present research was performed for studying morphological variation and investigating the presence of relationship between molecular markers related tillering in some genotypes of bread wheat under the field farm and laboratory conditions. In the field experiment, three seed densities including 150, 300 and 450 seed per square meter as the main plot factor and also 10 genotypes including th...
متن کاملGenetic Analysis and QTLs Identification of Some Agronomic Traits in Bread Wheat (Triticum aestivum L.) under Drought Stress
In order to study the genetic conditions of some agronomic traits in wheat, a cross was made between Gaspard and Kharchia varieties. F2, F3 and F4 progenies with parents were evaluated under drought conditions. Three-parameter model [m d h] considered as the best fit for number of fertile tiller and flag leaf length using generations mean analysis method. For number of grain per spike and main ...
متن کاملSucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure.
Overexpression of the Gossypium hirsutum sucrose synthase (SuSy) gene under the control of 2 promoters was examined in hybrid poplar (Populus alba x grandidentata). Analysis of RNA transcript abundance, enzyme activity, cell wall composition, and soluble carbohydrates revealed significant changes in the transgenic lines. All lines showed significantly increased SuSy enzyme activity in developin...
متن کامل